If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-40x-24=0
a = 6; b = -40; c = -24;
Δ = b2-4ac
Δ = -402-4·6·(-24)
Δ = 2176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2176}=\sqrt{64*34}=\sqrt{64}*\sqrt{34}=8\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{34}}{2*6}=\frac{40-8\sqrt{34}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{34}}{2*6}=\frac{40+8\sqrt{34}}{12} $
| -d+11-4d-9d=-17 | | 3/k=7.5 | | (8x-5)+(x+5)=180 | | x+52-4x+140=180 | | -u+273=201 | | 201=126-y | | 2(81-4.5y)+9=162 | | -13-4x=x-11 | | 3(x1)-5=5x-2 | | 3x-9=1/2x+12 | | 7+(4k+3)=14 | | 46x-46=32 | | 17+3(z+-2)+-11z=-7(z+2)+14 | | 4m+4-48+42m=32 | | 15x2=3x+10 | | 2-15x=7/8x | | 7x+44=-33 | | -4.9x^2+2x+850=0 | | 20(2z-10)=10 | | s/7=-1 | | 6c=18c | | 2x+13+3x-23=90 | | 8x-10+10x-20=180 | | 0=5x-26 | | 3w+6(w+7)=-12 | | 5(x-2)=-12 | | 42+104+x+9=180 | | 4x+4+79+65=180 | | 239-x=170 | | 128-x=204 | | -w+256=137 | | 192-u=136 |